

"OTTIMIZZAZIONE TERAPEUTICA DELLE PERSONE CHE VIVONO CON HIV: TERAPIE DUPLICE, TRIPLICE E NUOVE OPZIONI PER HTE" – Milano, 16/05/2025

ll ruolo del virologo nell'ottimizzazione del soggetto HTE

Francesco Saladini, PhD

Conflicts of interest

• Dr. Francesco Saladini has received personal fees for consultancy from MSD

Clinical challenges to optimal ARV treatment in heavily treatment-experienced (HTE) PWH

Genotype vs. Phenotype

Genotypic Assay: Sequencing of viral genes involved in drug resistance

Integrase Strand T	ransfer Inhibitors
IN Other Mutations:	K7Q • E11D • V31I • M50L • I72V • L101I • T124A • I135V • I200L • V201I • I220L
INSTI Accessory Mutations:	None
INSTI Major Mutations:	G1405 · Q148H

bictegravir (BIC) cabotegravir (CAB) dolutegravir (DTG) elvitegravir (EVG) raltegravir (RAL)

Intermediate Resistance High-Level Resistance Intermediate Resistance High-Level Resistance High-Level Resistance

Phenotypic Assay: in vitro cell-based system evaluating the replication of HIV in presence ۲ of serial dilutions of antivirals

Genotype vs. Phenotype

Fold-change values as a parameter to assess drug susceptibility

Fold-change cut-off values as a threshold for estimating drug susceptibility

Biological Cut-Off (BCO): mean FC observed with samples from treatment-naive PWH, plus two standard deviations.

No information on the expected response to the treatment *in vivo*

Clinical Cut-Off (CCO): based on virological response from clinical studies.

FC > Lower CCO (L_CCO) indicates a reduced virological response and associated with partial activity of a drug FC > Upper CCO (U_CCO) indicates lack of virological response (e.g., reduction of viral load <0.5 log copies HIV-1 RNA/mL) and associated with high-level resistance

Fold-change cut-off values as a threshold for estimating drug susceptibility

• Major resistance mutations: confers resistance on its own, may often decrease fitness

Minor resistance mutations: does not confer resistance on its own but may modulate resistance and/or (partially)
restore fitness which was decreased by a major mutation

Genotype vs. Phenotype

FEATURE	GENOTYPE	PHENOTYPE		
Execution time	1-2 weeks	6-8 weeks		
Costs	Medium	High		
Technical complexity	Medium (diagnostic kits available)	High (advanced lab training, BSL3 facilities)		
Result	Prediction	Direct measurement		
Sensitivity	 Sanger seq: species >20% of total viral population NGS: species >5% of total viral population 	Species >20% of total population (reported 10% or lower in some cases)		
Inter-laboratory reproducibility	Fair to good depending on lab experience	Limited data		
Off-target mutations	Detection possible	Only as site-directed mutants		

From Sanger to Next-Generation Sequencing

Sanger sequencing can detect viral populations which have a frequency >15-25% (Leitner *Biotechniques* 1993; Schuurman AHRH 2002; Palmer JCM 2005)

PROs and CONs of HIV-1 drug resistance testing using Next-Generation Sequencing approaches

- CE-IVD kits already available for both drug target regions and whole genome sequencing
- Detection of minority RAMs with frequency as low as 1%
- NGS on HIV-DNA more concordant with cumulative genotype than NGS on HIV-RNA (Armenia, IJAA 2022)

Methodology issues

- Low-abundance DRMs were overrepresented at thresholds <3%: *artifacts due to sequencing errors*? (Balakrishna, JAC 2023)
- Quality assurance programs required
- Need for standardized reporting → consensus shared between labs and clinics

Clinical relevance

- Limited impact on first-line therapy, particularly with high-genetic barrier drugs
- Higher impact for salvage therapy
- Depends on drug class (or specific drugs) and mutational load
- Lack of a threshold to identify clinically relevant minority RAMs

Evaluation of HIV-1 DNA resistance burden through NGS in highly treatmentexperienced multi-resistant individuals under virological control enrolled in the PRESTIGIO Registry

21/91 virologically suppressed HTE experiencing virological rebound in the PRESTIGIO registry, with baseline NGS DNA genotype and historical RNA genotype (H-GRT) data

A higher number of baseline MRMs as detected by **NGS at 5-20% threshold** was associated with virological rebound

Differences in number of major resistance mutations (MRM) according were evaluated with Mann-Whitney test. P value<0.05 were indicated in boldface.

Armenia, JAC 2024

Towards undetectability in viremic MDR PLWH

Current salvage therapies include:

- new ARVs with *innovative mechanism of action*
- drugs with full/partial activity as determined by genotypic/phenotypic assays
- DTG and/or DRV bid even in presence of RAMs

Towards undetectability in viremic MDR PLWH Last licensed ARVs

Nature Reviews | Microbiology

Towards undetectability in viremic MDR PLWH Last licensed ARVs

Nature Reviews | Microbiology

Mechanism of action of Ibalizumab

- Ibalizumab is a recombinant humanized immunoglobulin (Ig) G4 Mab
- Binds to the CD4 T cell extracellular domain 2 at four sites and domain 1 at two sites
- Does not interphere with the binding of MHC-II molecule to domain 1
- Prevents conformational changes leading to the exposure of V3 domain required for co-receptor binding

Assessment of genotypic patterns associated with HIV-1 sensitivity to ibalizumab

- Higher susceptibility to IBA associated with PNGS located closer to the N-terminus of V5
- HIV with only 1 V5 PNGS can exhibit complete or partial susceptibility to IBA (Pace et al, 2013; Toma et al, 2011; and TMB-202 and TMB-301 studies)
- Higher susceptibility to IBA associated with shorter V2 regions, PNGS deletion at position 386, or long side chain AA (H/R/M) at position 375, but only when V5 N-terminal PNGS were absent or deleted

Jullien, European Meeting on HIV & Hepatitis 2020

Mechanism of action of fostemsavir

- Fostemsavir is a pro-drug of the attachment inhibitor temsavir
- Broad range of natural susceptibility within each subtype, while CRF01_AE is naturally resistant¹
- Signature mutations identified, although other sites in the close CD4 binding site are involved²
- No correlation between baseline genotypic resistance and response, although baseline phenotypic resistance (>100 FC IC₅₀) correlated with limited response in the nonrandomized cohort of the BRIGHTE study³
- Similar recovery of CD4+ T-cell count in both viremic and aviremic PWH on BRIGHTE study at week 240⁴

1)Nowicka-Sanz AAC 2012; 2) Prevost Nat Commun 2023; 3) Gartland AAC 2022; 4) Aberg Infect Dis Ther 2023

Temsavir enhances the neutralizing activity of bNAbs

 Temsavir (TMR) enhanced the binding of most bNAb classes (excluding MPER) to HIV-1 infected cells expressing CD4 (CD4+p24+) post TMR treatment.

 TMR treatment dose-responsively enhances antibody-dependent cellular cytotoxicity (ADCC) of bnAbs against CD4+p24+ cells. Increased antibody concentrations promote max level of killing

Ferris CROI 2025

Towards undetectability in viremic MDR PLWH Last licensed ARVs

Nature Reviews | Microbiology

Genotypic and phenotypic susceptibility to doravirine

- Doravirine (DOR) has a partially overlapping resistance profile with other NNRTI and remains susceptible in nearly half of isolates resistant to each of other NNRTI¹
- DOR is active against most common single NNRTI RAMs excluding Y188L and Y318F¹
- The higher the number of NNRTI RAMs, the higher the resistance to DOR, even in absence of specific DOR RAMs^{1,2}
- According to the 3-fold biological FC cut-off (BCO), 15/39 (38.5 %) NNRTI resistant viruses were fully susceptible to DOR³
- The distribution of FC values strongly correlated with the levels of predicted susceptibility to doravirine as determined by the HIVdb algorithm³

Towards undetectability in viremic MDR PLWH Last licensed ARVs

Nature Reviews | Microbiology

Mechanism of action of lenacapavir

First-in-class capsid (CA) inhibitor approved for the treatment of multidrug resistant HIV-1 Picomolar potency ($EC_{50} = 50-100 \text{ pM}$)

LEN inhibits CA-mediated nuclear entry of HIV DNA, HIV assembly and proper capsid formation

Resistance to lenacapavir: results from the CAPELLA study

• 2-cohort phase II/III trial

Endpoints: efficacy (FDA snapshot), resistance emergence, and safety at Wk 156

Ogbuagu. IDWeek 2023. Abstr 1596. Segal-Maurer. NEJM. 2022;386:1793.

٠

Resistance to lenacapavir: results from the CAPELLA study

- 14/72 (19.4%) participants developed emergent LEN resistance (9 participants by Wk 52, 5 participants between Wk 52 and 104, none between Wk 104 and 156)
 - All mutations map to LEN binding site and are not natural polymorphisms or selected by other ARVs: M66I; Q67H/K/N; K70H/N/R/S; N74D/H/K; A105S/T; T107A/C/N/S
 - 2 participants with earlier resistance developed additional mutations
 - 1 participant with emergent K70R+T107N with existing Q67H: LEN susceptibility reduced from 4.5- to 85-fold of WT
 - 1 participant with emergent T107T/N with existing K70N + N74K resulting: no LEN susceptibility data for triple mutant
 - All participants with no fully active drugs in OBR or inadequate OBR adherence
 - Median change in CD4+ cell count change: 82 cells/mm³ (IQR: 48-399 cells/mm³)

Characteristic, n	Total Population (N = 72)
OBR • No fully active agents in OBR	4
 Inadequate adherence to OBR* 	10
Resuppressed after LEN resistance emergence while continuing LEN • With OBR change	5
 Without OBR change 	3
Not resuppressed after LEN resistance emergence Continued LEN⁺ 	9 6
 Discontinued LEN for reasons unrelated to efficacy (death, nonadherence, LTFU) 	3

Impact of the HIV-1 genetic variability on the barrier to resistance to lenacapavir

- In vitro study including 26 gag-PR recombinant viruses using samples from therapy naïve (TN, n. 15) or heavily treatment-experienced (HTE, n. 11) PWH from the PRESTIGIO Registry
- 13 non-B subtype (CRF02_AG and F1 in three cases each, while A1, C, D, G, CRF01_AE, CRF06_cpx, B/F URF in one case each)

- Phenotypic baseline susceptibility and time to viral breakthrough was comparable among B vs. non-B subtypes and HTE vs. TN PWH
- No difference in the selection of LEN RAMs between B and non-B subtypes
 Paletti oral communication ICAR 2024

Resistance to IBA, FTR, LEN - Summary

Drug	Natural resistance	Cross resistance	Genetic barrier to resistance		
IBA	Isolates with no PNGS in gp120 V5 (2-8% depending on subtype)	 None among the three new classes None with old classes 	Very low		
FTR	CRF01_AE, occasional isolates of other subtypes	 None among the three new classes None with old classes 	Very low		
LEN	Virtually none	 None among the three new classes None with old classes 	Low		

No need of genotypic/phenotypic screening before treatment, but...

- ...genotypic and phenotypic testing might be helpful for IBA and FTR at failure to evaluate emergent mutations and possible loss of susceptibility as compared to the pretherapy sample
- LEN RAMs already characterized, but data from real-life use should be carefully monitored

Towards undetectability in viremic MDR PLWH How to manage old drugs?

- Genotype on viral RNA provide a snapshot
 of currently circulating viral populations
- Historical RNA genotype provides additional information on the cumulative past resistance that might re-emerge and and may help to predict virological failure (Zaccarelli Antivir Ther 2009, Garcia Antivir Ther 2011)
- Phenotypic testing might be helpful to identify ARVs with residual activity when intermediate/high-level resistance is predicted by genotype

Different susceptibility levels to TAF according to either genotype or phenotype

NRTI RAMs	NNRTI RAMs	IC ₅₀ Fold Change		Predicted susceptibility	Phenotypic susceptibility
		TAF	ISL	TAF	TAF
M41L, M184V, L210W, T215Y	none	2.7	6.8	<u> </u>	1
M41L, D67G, S68G, K70R, L74I, M184V, T215Y, K219E	A98G, K103N, Y181C, P225H	3.9	7.3	I	I
K70Q, M184MV, T215F	E138Q, V179E, Y181C	1.0	3.9	LLR	S
M41L, M184V, T215Y	V106I, Y188L, K238N	2.4	22.6	LLR	I
K65R, Y115F, M184V	Y181C, H221Y, M230I	7.7	2.4	R	R
D67N, K70R, M184V, T215F, K219Q	A98G	2.6	13.7	I	I
M41L, E44D, L74V, M184V, L210W, T215Y, K219N	L100I, E138R, V179L	1.6	3.8	R	I
K65R, D67G, M184V, K219Q	none	4.9	3.4	1	R
M41L, E44D, D67N, T69D, M184V, L210W, T215Y, K219KR	K103N, Y181I	4.9	8.0	R	R
M41L, E44D, D67N, K70Q, V75M, F77L, M184I, L210W, T215Y, K219R	E138A, G190A	4.2	37.8	R	R
M41L, A62AV, D67N, K70G, V75I, M184MV, L210W, T215Y, K219Q	K101E, Y181C, G190A	3.3	2.3	R	I
D67G, S68G, K70R, M184V, T215F, K219E	Y188L	0.5	8.9	I	S
M184V	none	1.2	9.0	S	S
M41L, S68G, M184V, L210W, T215C, K219E	Y181I	0.5	5.5	LLR	S
M41L, M184V, L210W, T215Y, K219E	K101E, E138A, G190Q	4.5	9.8	I	R

- Tenofovir FC cut-offs: L_CCO=1.4, U_CCO= 4.0
- Agreement genotype/phenotype in 8/15 (53%) cases, underestimation of drug activity by genotype in 5/15 (33%) cases

Paletti et al., European Meeting on HIV and Hepatitis, 22-24 May 2024, Barcellona (Spain)

Support for treatment decisions in PWH with MDR HIV-1

Support for treatment decisions in PWH with MDR HIV-1

Phenotypic analysis on HIV **DNA** to

determine what drugs are active

